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VERSIONE ITALIANA 

 

Our natural world behaves mostly analogically, at least at a macroscopic level, therefore to interface it 

to digital computers one has to sample analog signals. The universally known sampling theorem, 

credited to Nyquist and Shannon, but the story is more articulated [1] [9], states that to reconstruct 

correctly the information carried by a bandlimited signal, the sampling frequency Sf  must be at least 

twice the highest frequency Hf  of the signal : 2S Hf f . In practice we use 2S Hf f  because there 

could be ambiguity in reconstructing the component associated to Hf  and, depending on the non ideal 

shape of real-world bandlimited spectra, also folding of the upper part of the spectrum. In this form 

the theorem is always valid but sometimes it is stated as 2Sf B  where H LB f f= −  is the bandwidth 

of the signal. The last formulation implicitly assumes that the lowest frequency Lf  of the signal is 

zero, 0Lf = , otherwise it is not generally true, as we will see. If the sampling frequency Sf  is lower 

than 2 Hf  , i.e. 
2

S
H

f
f , each of the frequencies f   above 

2

Sf  will be aliased, i.e. superimposed or 

confused, in particular,  with a corresponding frequency f  in the range 0
2

Sff   (page 1 of Fig.1) 

according to the relation Sf m f f =   or 
Sf f m f= −  with 1,2,3...m =  integer (Fig.1). 

 

 
Fig.1 Folding around the Nyquist frequency 2sf  and its multiples [2]. 

 

You may think of the diagram of Fig.1 as pages of length 2Sf  that fold over each other, in particular 

over the first, alternately like an “accordion-pleated” [2] strip of paper. Because this phenomenon the 

spectrum of a signal, when sampled, will be aliased or replicated over all the pages. When the 

spectrum of the signal is contained entirely in one of the pages, the spectral aliases of the sampled 

signal will not overlap. If the original spectrum is not on the first page, one of the aliases will be 

positioned on the first page with the result of having converted down the frequencies of the original 

spectrum without modification of the bins power. The order of the bins of the original spectrum will 

be preserved if the original spectrum of the signal is contained in the odd pages and inverted for the 

even pages. All this occurs because sampling in time domain is a multiplication of the signal by a 

comb of unitary pulses, which in frequency domain becomes a convolution of the Fourier transformed 

unitary pulses with the spectrum of the signal. A nice detailed explanation, both mathematical and 

visual, is given in [4]. The complete spectrum of a sampled bandlimited signal is constituted of 

replicas of the original spectrum symmetrically disposed around multiples, positive and negative, of 

the sampling frequency, as illustrated in Fig.2. For example, let the original spectrum (the diagram on 
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the upper side) be composed of two pure tones at 1 and 12 (arbitrary frequency units) and of a 

continuous spectrum ranging from 6 to 7. Sampling the signal at 5 we obtain the coloured diagram on 

the bottom, where we can see the symmetrical replicas of the original spectrum centred at multiples of 

5  and also note that the pure tones, originally positioned at 5 and 12, and then isolated, are now 

superimposed to the borders of the continuous spectrum. Of course, when we sample a signal with 

continuous spectrum for a finite duration 
st , the spectrum of the sampled signal will be constituted of 

discrete components (bins), whose frequency resolution is 
1

s

f
t

 = , which are not visible in Fig.2.     

 

 
 

Fig.2 Replicas of the spectrum of a sampled bandlimited or bandpass signal. 

 

The “accordion-pleated” paper model leads to a straightforward mathematical formulation. 

Let  ,L Hf f  be the bandwidth of the signal to be sampled.  

The key conditions to avoid the folding of the spectrum on itself, for  0,1, 2,3...n =  integer,  

are [3] 

2

S
L

f
n f  and  ( )1

2

S
H

f
f n +  

which means that the original spectrum of the signal must be contained entirely in one of the pages of 

Fig.1. Actually the spectrum could be segmented in different pages. In that case we have to state the 

above conditions for each segment and others have to be verified so that the segments will not fold on 

each other when the signal is sampled. 

The connection between the page number n  and m  is 1n pagenumber= −   

Isolating Sf  from the above inequalities we have 

                                                             
2 2

1

H L
S

f f
f

n n
 

+
                                                        (1) 

and eliminating Sf  we obtain 
2 2

1

H Lf f

n n


+
 from which 

                                                                     L

H L

f
n

f f


−
                                                       (2) 

These are the fundamental formulae for undersampling, even if I did not use this term in my original 

report [3] because, at that time, I was not concerned about any specific terminology for this kind of 

operation. 

For example, let it be 1550Lf kHz= and 2100Hf kHz= . Applying (2) we have 2.8n  , i.e. 

2,1,0n = , and then from (1) we obtain all the allowable sampling frequencies: 2n = : 

1400 1550SkHz f kHz  , 1n = : 2100 3100SkHz f kHz   and, of course, 0n = :  4200 SkHz f . 

As anticipated, the order of the bins of the aliased spectrum of the bandpass signal is reversed or not 

depending on the position of the original spectrum of the signal to respect to the chosen Sf : if the 

corresponding 1n +  is odd the order is preserved, if it is even the order is reversed. 

Note that for doing a correct undersampling you cannot use all the sampling frequencies 

( )2S H Lf f f − , in fact in the above example it would be 1100Sf kHz  which is clearly wrong. If 
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you are interested only in the lowest bound ( )S LB
f  of the sampling frequencies, substituting (2) into 

(1) the left term furnishes 

                                                             ( )
2 H

S LB

H

H L

f
f

f

f f

=
 
 

− 

                                   (3) 

 

which is the same as that reported in [4]. An expression equivalent to (1), but in the time domain, is 

given in [5]. We did not use the equal sign in (1) and (2) to avoid a possible folding and ambiguities 

of the frequencies at the borders of the spectrum, but if the power in the bins outside the open range 

( ),L Hf f  is zero or  negligible we may write 
2 2

1

H L
S

f f
f

n n
 

+
 and L

H L

f
n

f f

 
  

− 
, i.e. we have to 

consider the shape of the real-world bandpass spectrum and choose  ,L Hf f  so that to avoid 

ambiguities and minimize the folding of the spectrum on itself. It is possible to give to (3) a different 

form. Let it be H

H L

f
x

f f


−
 and call it “band index”. Consider 

( ) 2S LB

H L

f x
y

f f x
 =

−   
. The range of 

x

x  
 

is  )1,2 , furthermore it is lim 1
x

x

x→
=

  
  and then 

( )
lim 2

S LB

x
H L

f

f f→
=

−
. The y  range is  )2,4  and its 

diagram is shown on Fig.3. Note that for 1, 2,3,4, 2x y=  =  not 4 .  

 

 
Fig.3 Lowest bound of the sampling frequency normalized to the bandwidth versus the band index. 

 

In a recent article [6] were reported the two formulae 2SAMPLE SIGf f   and 
4

2 1

CAR
SAMPLE

f
f

Z
=

−
 to 

compute an allowable sampling frequency for undersampling a bandpass signal, being CARf  the 

carrier, and SIGf  the bandwidth of the signal. The procedure to compute SAMPLEf  is: as a first 

approximation put 2SAMPLE SIGf f=  , insert this value in 
( )4 1

2

CAR SAMPLEf f
Z

+ 
=  
 

 then  use this 

rounded-down integer value of Z  to calculate the true SAMPLEf . I think that this method, as an 

illustration of the undersampling concepts, is useless and even misleading at least for two reasons: the 

first because it is not simpler than the more general approach given by the inequalities (1) and (2), the 

second and worse, because it gives only a single sampling frequency instead of all the permitted 

frequencies, and the computed frequency is not even the lowest bound, but only that particular 

sampling frequency for which the spectral aliases of the sampled signal are centred on the pages of 

Fig.1. The above formulae express this last property in a foggy way and even as an algorithm they are 

twisted, compared to the sunny logic of (1) e (2). In fact take 
2

L H
CAR

f f
f

+
=  and SIG H Lf f f = − , 

being 1825CARf kHz=  and 550SIGf kHz = , as in the preceding example, we will have 
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1460Sf kHz= , instead the lowest bound for the sampling frequency is ( ) 1400S LB
f kHz= . If the only 

data at our disposal are 
CARf  and SIGf  it is easy to switch to the general method taking 

( )2L CAR SIGf f f= −   and ( )2H CAR SIGf f f= +   and carrying on the computation as I suggested. 

Anyway, the formulae 2SAMPLE SIGf f   and 
4

2 1

CAR
SAMPLE

f
f

Z
=

−
 can be easily deduced  from 

2 2

1

H L
S

f f
f

n n
 

+
. By definition SIG H Lf f f = − , therefore 2SAMPLE SIGf f   is always satisfied, because 

implicitly contained in (1): note that you cannot use every 2SAMPLE SIGf f   for undersampling, as 

already shown, because you have to satisfy the other constraint. To deduce 
4

2 1

CAR
SAMPLE

f
f

Z
=

−
, assume 

2 21

2 1

H L
S

f f
f

n n

 
= + 

+ 
, i.e. the arithmetic mean of the two bounds of (1). Doing the following 

sequential manipulations we have: 
( )

( )
2 2

11 1

2

H L L

H L LH L
S

f f f
n f f ff f nf

nn n n n

+
++ +

= + = =
++ +

.  

Because 
2

H L
CAR

f f
f

+
= , and substituting 

4 2

S L
f f

n
  deduced from (1), we finally obtain 

4
1

2

S
CAR

S

f
f

f
n

+


+

. The substitution 
4 2

S L
f f

n
  produces, as expected, an Sf  lower than the arithmetic 

mean assumed in advance. Eventually it is 2
2

S
S S CAR

f
n f f f+ −   and then  

4 4

2 1 2 1

CAR CAR
S SAMPLE

f f
f f

n Z
 = 

+ −
 with 1Z n= + . A more perspicuous deduction can be done from the 

key conditions [3] considering that the aim of the above formulae for SAMPLEf  is to centre the spectral 

aliases of the sampled signal on the pages of Fig.1. It has to be 
( )1

2 2

SAMPLESAMPLE
L H

n fnf
f f

+
− = −  

from which 
( )2 4

2 1 2 1

L H CAR
SAMPLE

f f f
f

n n

+
= =

+ +
. 

Even in practical applications it is important to be able to calculate all the permitted sampling 

frequencies, because you may have some constraints that force you to choose a particular range of 

sampling frequencies, so that it is better to rely on the general method for this computation.  

My interest in signal processing started in the mid of 1975 when I began doing my thesis in Physics 

[7] which consisted in the design and in the realization of a SODAR system for use in atmospheric 

boundary layer studies. For the hardware I basically followed the work done by E.J.Owens [8], adding 

some original solutions, anyway I was the first in Italy to design and build a SODAR system that 

really worked, and even today many people use my scientific and technical ideas and solutions, some 

of which are described in [3] [7] [10], even if not all of them recognize it. SODAR is the acronym of 

SOund Detecting And Ranging and it is an acoustic RADAR which emits in the atmosphere short 

acoustic bursts which are scattered by turbulence. The repetition rate of the bursts is, normally, 

between 3 and 6 seconds depending on the spatial range to be explored. The emitter is usually a power 

loudspeaker, placed at the focus of a microwave parabolic dish generally enclosed in an acoustic 

shield to attenuate the environmental noise. There are also SODARs whose antennas are constituted 

of an array of loudspeakers. To respect to the frequency range emitted there are, basically, two kind of  

instruments: low and high frequency SODARs. Typically, the low frequency range is 1000-3000 Hz, 

the high frequency 5000-7000 Hz. In Fig.4 and Fig.5 are shown the antennas of recent versions of 
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SODARs I contributed to design: the big truncated cone-shaped antennas of Fig. 4 are for low-

frequency range, the three horn-reflectors of Fig.5 are for high-frequency range. 

 

 
 

Fig.4 Antennas of  the low-frequency SODAR system 

 

 

 
 

Fig.5 Antennas of  the high-frequency SODAR system 

 

During the 1976, and for many years after, the first version of the SODAR, and its upgrades, I 

designed and built personally, were extensively used in measurement campaigns and there emerged 

the need of an efficient sampling of the signal and the necessity of a real-time processing of the data. 

The first need came also from the fact that we had old computers with limited A/D and poor storage 

units, the second because we needed the wind profiles immediately for certain applications in the air 

pollution monitoring. The SODAR is capable of producing a cumbersome amount of data even for 

today standards, especially if you want to store the raw data for advanced future analysis and because 

you have to digitize the signal continuously for many days, and sometimes for months. So that I had 

to reduce the rate and the amount of sampled data without losing the information we were interested 

on. The solution proceeded by successive approximations. My first approach was hardware and I 

realized, in 1980, an audio heterodyne that translated down the spectrum of the echo. It was also tried 

the decimation of the sampled data, comparing the spectra before and after and observing empirically 
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that, in certain conditions, the result was only a down translation of the frequency bins without 

modification of the bins power. Then at the beginning of 1981 I ran into [2], p.230, and imagined that 

the “accordion-pleated” paper model had a useful mathematical formulation in terms of the 

fundamental formulae (1) and (2) for undersampling shown above. Only much more later I read [4] 

and [5] and realized that, at least (1) was already known, even if the topic was understated and treated 

differently (it was never named undersampling but “bandpass sampling theorem”) and partially and 

without proof in the quoted references, instead I think that my proof is simple and smart. In [4] the 

fundamental formula is stated differently and in the time domain instead of frequency domain, as I 

did. Furthermore no formula for n  is given. In [5] the “bandpass sampling theorem” is listed among 

the problems left to the reader and the formula shown refers only to the critical sampling frequency 

(3), but one of the terms may suggest, to an attentive reader, the way to compute n . At that time, to 

my knowledge, people working on SODAR systems did not use the undersampling technique to 

digitize the signal, and even FFT was not so popular. Hence I think I was the first to introduce the 

undersampling in this area, and in a very simple form well suited for practical use. My fault was not to 

publicize enough my results with the consequence that a few people have tried to catch the merit for 

them even people I informed of personally. But, even if my report of 1983 was late, having I achieved 

the results in 1981 and even before, the papers of the others are all of two and more years later and, in 

a number of cases, I know why: at the beginning they did not believe in my results! 

The emitted signal of the SODAR is a sinusoidal burst typically of 100 milliseconds every 6 seconds. 

The receiver channels open after the emission of the bursts. Basically, the signal received is strongly 

modulated in amplitude at a low frequency, broaded in frequency by turbulence and shifted in 

frequency because the Doppler effect, furthermore it is embedded in a variable amount of 

environmental noise. With the SODAR it is possible to visualize the atmospheric turbulence and 

measure the wind profile remotely up to 1000 metres using the Doppler effect. The sinusoidal burst 

emitted has a bandwidth of 2B T=  to the first zeros, where T  is the duration of the burst. In our 

case 100T ms=  and then 10B Hz=  centred on Tf , the transmitted frequency. The received signal 

has a spectrum that looks like that of Fig.6, for a given segment of data. 

 

 
 

Fig.6 Received power spectrum with very good S/N ratio 

 

 

Our aim is to measure the vertical profiles of the speed and direction of the wind and the intensity of 

turbulence for each scan or for a number of averaged scans and at a number of height levels. Before 

digitizing we have to filter the signal with a bandpass filter with bandwidth E , as shown in Fig.6, to 

avoid aliasing too much out of band noise. Furthermore, I lock the sampling frequency to the 

transmitted frequency to compensate for possible relative drifts that influence directly the precision of 

the wind measurement. Moreover, when the frequency bands of the three antennas are separated in 
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such a manner to not interfere each other and to satisfy, in the whole, the requirements for 

undersampling, the three received signals are mixed together [10] before sampling, reducing at one 

third the required sampling rate. In a particular arrangement the whole bandwidth of the low 

frequency SODAR was  1550,2100 Hz  so that the numbers are the same as in the previous example, 

except for the measuring units, which are uninfluential in this context. This is the moment when 

undersampling enters the scene: the ratio 
( )
2

3H

S LB

f

f
=  determines, in the example shown, the maximum 

factor of reduction on the number of sampled data which is a great saving in memory storage and a 

strong reduction (considering also the reduction in the sampling rate by mixing, when possible, of the 

three received signals) of the sampling rate that speed up the data analysis, permitting the real-time 

processing with cheaper instrumentation. After having undersampled the signal of each scan, we 

partition them in a number of segments and for each segment we apply the FFT to extract the 

spectrum shown in Fig.6. 

In the backscattering mode, i.e. receiver coaxial or coincident with the transmitter, the axial 

component of the wind is given by  

                                                               v
2

T E
i

T

f fc

f

−
=                                               (4) 

where c  is the sound velocity, Tf  the transmitted frequency and Ef  the received frequency. This is a 

first order approximation but it is pretty good in our atmosphere because vi c . Typically the 

received frequency is defined as the first normalized moment of the spectrum 

( )

( )

R
E

R

P i i

f
P i





= 



 

in which R  is the interval shown in Fig.6, ( )P i  is the power of the i  bin and  is the resolution of 

the spectrum. In a typical triaxial arrangement the antennas are positioned as in Fig.7 

 

 
 

Fig.7 Orientation of the antennas of a triaxial SODAR system 

 

Having computed the three axial components vi , 1,2,3i = , of the wind v  with the formula (4), we 

need, for meteorological use, to transform them in cartesian components iu , 1,2,3i = , directed 

respectively along the axes , ,x y z  of a orthogonal frame of reference. By definition is v vi ia   and  

 vi iu e   where ia and ie are respectively the unit vectors of the antennas axes and of the cartesian 

axes. It is  

                                              v v v (v )i i ik k ik k ik ka a e a e a u=  =  =  =                                   (5) 
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in which we use the summation convention for the repeated indices in the products. It is ik i ka a e=   

hence i ik ka a e=  with , 1, 2,3i k = . Because we already know 
iv  from (4), knowing also the geometric 

coefficients ika  (cosine directors)  we will be able to solve (5) to respect to the three unknowns ku . 

For the particular orientations depicted in Fig.7, we have  

( ) ( ) ( )1 1 1 2 2 2 2 3= cos ,0,sin ; = cos cos ,cos sin ,sin ; = 0,0,1a a a         

hence 

1 1 1 1 3

2 2 1 2 2 2 3

3 3

v =cos sin

v =cos cos cos sin sin

v

u u

u u u

u

 

    

 + 


  +   + 
 =

 

 

Solving to respect to the ku  we finally obtain  

 

1 1 3
1

1

2 3 2 2 1 2 1 1
2

2

3 3

v sin v

cos

v - v (sin -cos tan cos ) cos cos v cos

cos sin

v

u

u

u





      

 

− 
=


  −  

=
 


=

 

   

Eventually, what began with undersampling SODAR signals, has given its fruits. We are able to save, 

plot, print wind and intensity profiles of the atmospheric boundary layer, up to about 1000 metres, 

using relatively cheap A/D, personal computers and reasonable storage units. The Fig 8 and Fig.9 

show sample outputs of the processed SODAR data.  

 

 
 

Fig.8 Vertical profile of the intensity of the vertical backscattered signal versus time. 
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Fig.9 Vertical profile of the vertical wind component versus time. 
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